Mission Statement
The Common Core State Standards provide a clear articulation of our state educational goals through a consistent message of what students are expected to learn, so teachers and parents know what they need to do to help them. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that our young people need for success in college and careers. With American students fully prepared for the future, our communities will be best positioned to compete successfully in the global economy.
Common Core State Standards (CCSS) is NOT a curriculum, it is a set of common standards.
Districts have flexibility to design curriculum and instruction around standards.
Unit 5 is using a variety of resources for student and teacher resources that meet the needs of our students.
Student data is collected to inform instruction and share with parents.
ISBE collects necessary student information, we do not share information with inBloom.
CCSS is a state-led initiative, independent of federal government.
Our teachers create curriculum and pacing guides, online CMS sites and assessments for students in our district.
We build capacity for professional development through train the trainer and coaching models.
Where did the CCSS come from?

A state-led effort coordinated by Council of Chief State School Officers (CCSSO) and the National Governors Association Center for Best Practices (NGA Center).

The two groups worked with representatives from participating states including:

- Wide range of educators
- Content experts
- Researchers
- National organizations
- Community groups

Standards reflect feedback from general public, teachers, parents, business leaders, states, and content area experts. Following feedback, draft standards were opened for public comment, receiving nearly 10,000 responses. (Illinois held public meetings Sept. 2009 and March 2010).

The State of Illinois adopted the Common Core in 2010 with expected full implementation during the 2013-14 school year to replace the Illinois Learning Standards last adopted in 1997.
In the States

Forty-five states, the District of Columbia, four territories, and the Department of Defense Education Activity have adopted the Common Core State Standards.
Why do we need Common Standards?

- College & Career Readiness Standards – Anchor expectations that must be met to be prepared for college and the workforce.

- Consistency and uniformity to what students learn at each grade level from one state to another.

- Aligns with international standards, so students are well-equipped to compete in today’s global economy.

- Grade Level Standards – End-of-Year expectations and cumulative progression.

- Research and Media Skills are embedded into the standards.

- Shared Responsibility throughout all disciplines for Literacy Development.

- Currently, less than 50% of graduates nationwide can sufficiently read complex texts.
What do we want students to know and be able to do?

English Language Arts (ELA)
- Read more non-fiction
- Enjoy and discuss the details of non-fiction
- Find evidence to support their arguments
- Read material at comfort level AND work with more challenging content
- Become scholars
- Make arguments in writing using evidence
- Compare multiple texts in writing
- Learn the words that they can use in college and career

Mathematics
- Spend more time on fewer concepts
- Keep building on learning year after year
- Understand WHY math works
- TALK about why the math works
- PROVE that they know why and how the math works
- Apply math in real world situations
- Know which math to use for which situation
Why does Unit 5 use CCSS to determine what students should know and be able to do?

Board of Education Policy 6.40 states:

The Superintendent shall recommend a comprehensive curriculum that is aligned district-wide and articulated across all grade levels. The curriculum shall be aligned with:

1. The District’s educational philosophy and goals.
2. Student needs as identified by research, demographics, and student achievement and other data.
3. The knowledge, skills, and abilities required for students to become life-long learners.
4. The requirements of state and federal law and regulations for curriculum and graduation requirements.
5. The Illinois State Learning Standards and any District learning standards.
6. Any required state or federal student testing.

The Board will consider the Superintendent’s recommendation and adopt a curriculum that meets the above criteria.
How do Standards Fit in the Curriculum Design Process?

Learning Standards
- Big Ideas/Content Anchors
- Technical Language

Learning Targets
- Indicate type of learning
- Student Friendly Language

Assessments
- Match Target Type
- Balanced Assessment Plan
ELA

Notation for grade-specific standards:
Individual grade-specific standards are identified by grade, strand, and number (or number and letter, where applicable); for example, 2.RL.1, means grade 2, Reading Literature, standard 1.

<table>
<thead>
<tr>
<th>Grade</th>
<th>2.RL.1</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text.</td>
<td></td>
</tr>
</tbody>
</table>

*See Appendix A (from ODE homepage search or add go/commoncore to address; then link to ELA).
**See Appendices A, B, and C (from ODE homepage search or add go/commoncore to address; then link to ELA).
How to read the grade level standards

Standards define what students should understand and be able to do.

Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.

Domains are larger groups of related standards. Standards from different domains may sometimes be closely related.

Number and Operations in Base Ten 3.NBT

Use place value understanding and properties of operations to perform multi-digit arithmetic.

1. Use place value understanding to round whole numbers to the nearest 10 or 100.
2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., \(9 \times 80, 5 \times 60\)) using strategies based on place value and properties of operations.
Example of elementary math process... first we unpacked and sorted by target for future assessment work.

<table>
<thead>
<tr>
<th>Grade Level/Course: 1st Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard with Code:</td>
</tr>
<tr>
<td>Domain:</td>
</tr>
<tr>
<td>Cluster:</td>
</tr>
</tbody>
</table>

Students will know and be able to:

<table>
<thead>
<tr>
<th>Knowledge Targets</th>
<th>Reasoning Targets</th>
<th>Performance Skills Targets</th>
<th>Product Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose a symbol for an unknown number in an addition or subtraction problem within 20.</td>
<td>Solve word problems using addition and subtraction up to 20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interprets situations to solve word problems with unknowns in all positions within 20 using addition and subtraction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determines appropriate representations for solving word problems involving different situations using addition and subtraction.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standards for mathematical practices

<table>
<thead>
<tr>
<th>Make sense of problems and persevere in solving them.</th>
<th>Reason abstractly and quantitatively.</th>
<th>Construct viable arguments and critique the reasoning of others.</th>
<th>Model with mathematics</th>
<th>Use appropriate tools strategically.</th>
<th>Attend to precision.</th>
<th>Look for and make use of structure.</th>
<th>Look for and express regularity in repeated reasoning</th>
</tr>
</thead>
</table>
SECOND WE MAPPED CONTENT INTO OUR THREE TEACHING TRIMESTERS (YEAR AT A GLANCE FORMAT)

1st Grade

Instructional Math Overview

April 2013

<table>
<thead>
<tr>
<th>Trimester 1</th>
<th>Trimester 2</th>
<th>Trimester 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read, write, and count to 50 (NBT.1)</td>
<td>Read, write, and count to 100 (NBT.1)</td>
<td>Read, write and count to 120 (NBT.1)</td>
</tr>
<tr>
<td>Relate counting to addition/subtraction</td>
<td>Organize, represent, and interpret data with up to 3 categories (MD.4)</td>
<td>Compose 2-D and 3-D shapes to create or compose new shapes and make a distinction between defining attributes and non-defining geometric attributes; build and draw shapes to possess defining attributes (G.1, G.2)</td>
</tr>
<tr>
<td>Apply properties of operations as strategies to add and subtract (number line, hundreds chart & manipulates) (OA.3)</td>
<td>Understand subtraction as an unknown addend problem (OA.4)</td>
<td>Solve word problems that call for addition of 3 whole numbers whose sum is less than or equal to 20 (OA.2)</td>
</tr>
<tr>
<td>Understand meaning of equal sign (OA.7)</td>
<td>Determine the whole number in an addition or subtraction equation (OA.8)</td>
<td>Add within 100, including adding a two-digit and a one-digit number, regrouping with addition only (NBT.2)</td>
</tr>
<tr>
<td>Use addition and subtraction within 20 to solve word problems (OA.1)</td>
<td>Tell and write time in hours/half hours using analog and digital (MD.3)</td>
<td>Given a 2-digit number, mentally find 10 more or 10 less than the number (NBT.4)</td>
</tr>
<tr>
<td>Tell and write time in hours using analog and digital (MD.3)</td>
<td>Understand that 2 digits of a 2-digit number represent amounts of tens and ones (NBT.2)</td>
<td>Subtract multiples of 10 in the range 10-90 (NBT.6)</td>
</tr>
<tr>
<td>Order 3 objects by length, compare the lengths of 2 objects by the 3rd (MD.1)</td>
<td>Compare two-digit numbers based on tens and ones using <, >, = (NBT.3)</td>
<td>Partition circles and rectangles into 2 and 4 equal shares (G.3)</td>
</tr>
<tr>
<td>Add and subtract fluently within 20 (OA.6)</td>
<td>Add and subtract fluently within 20 to solve word problem (OA.1)</td>
<td>Use addition and subtraction within 20 to solve word problems (OA.1)</td>
</tr>
</tbody>
</table>

NOTES:

- Please remember to continually build on and review skills all year.
- Teaching moments such as calendar time, 10 to 15 minutes, should be used to review skills or introduce non-standard skills such as money, graphs, skip counting, patterns, odd/even and literacy skills.
- When doing math boxes in the journals it is in your judgment to cross out any boxes that include skills that are not related to Common Core Standards.
<table>
<thead>
<tr>
<th>UNIT OF STUDY</th>
<th>MINI-LESSONS Instructional Focus CCSS</th>
<th>SUPPORTING GAMES and ACTIVITIES KEY VOCABULARY</th>
<th>Math Practice Standards and Guiding Questions</th>
</tr>
</thead>
</table>
| The goal of this section is to-
- Measuring lengths of objects using non-standard and standard measurement (inches and centimeters). | 2.7, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 6.6, 10.1
1.MD.2-
I can find the length of an object by using a different shorter object touching end to end as a unit of measure, comparing the two lengths and counting the smaller lengths.
I can express the length of an object to the nearest inch. | Journal page: 56, 60, 62, 64, 65, 66, 70, 184 | Why do we use different tools to measure things of different lengths?
Which tool(s) helps you understand what an inch is? A foot? Why?
Why is it helpful to know when and how to use different measuring tools? |
| | | | |
THIRD, WE ALIGNED TO OUR CURRENT CURRICULUM AND PROVIDED A GUIDE FOR TEACHERS AS THEY MADE THE SHIFT.

April 2013

Grade 1 Unit of Instruction
Everyday Mathematics Aligned with Common Core State Standards

New to 1st Grade
- use of a symbol for an unknown number in an equation
- counting to 120 and writing to 120
- using ten frames to show groups of 10 (always used bundles and base ten blocks)
- half-circles, quarter-circles, cubes
- use of a symbol for the unknown number in an equation
- Properties of Operations — Commutative and Associative
- only go to 1/2 hour in time and use of digital AND analog
- money

Moved from 1st Grade:
- Estimation
- Groupings of 2's, 5's, and 10's to count collections
- fair shares
- Specific types of data displays
- Certain, impossible, more likely or less likely to occur
- Venn diagrams
- Extending patterns

Trimester 1
Read, write, and count to 50
Lessons: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9
Games: Monster Squeeze, Bunny Hop, Top It, read and write tally mark activities, penny-dice game, dice-roll tally, rolling for 50, before and after.
Journal Pages: back cover, 1.2, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.15, 1.17, 1.21, 1.22

Relate counting to addition/subtraction
Lessons: 1.9, 1.10
Games: Ten-Frame Top It, High Roller.
Journal Pages: 35, 36

Apply properties of operations as strategies to add and subtract (number line/ hundreds chart & manipulates)
Lessons: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6
Games: Rolling for 50, Domino Top-It, High Roller, Ten Frame Top-It.
Journal Pages: 7, 37, 38

Understand meaning of equal sign (Coming Soon)
Note that there is no lesson to teach this but it needs to be taught within addition and subtraction lessons.

Games:
Journal Pages:

Use addition and subtraction within 20 to solve word problems
Lessons: 1.10, 1.11
Games:

Tell and write time in hours using analog and digital
Lessons 2.5, 2.6
Games:
Journal Pages: 14, 16, 19, 29, 33
Order 3 objects by length; compare the lengths of 2 objects by the 3rd
Games:
Journal Pages: 57

Progress Checks 1, 2,
ORGANIZE SO IT FITS WITH OUR INSTRUCTIONAL APPROACH-WORKSHOP MODEL

Readers Analyze the Author’s Message and Interpret Themes

<table>
<thead>
<tr>
<th>UNIT OF STUDY</th>
<th>MINI-LESSONS Instructional Focus</th>
<th>SUPPORTING TEXT</th>
<th>KEY VOCABULARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The goal of this unit is to deepen comprehension. Students will use what they know about story structure to summarize the text, and then use rereading as a tool to deepen comprehension. Close examination of the texts will help them see connections within and across texts they are reading. Thinking about what the author wants them to know, they will find themes in texts and compare/contrast those themes connecting ideas across texts. A theme is a one or two words, such as friendship, that reflect your thinking about the book. There can be more than one theme within a text as characters change and develop according to the plot of the story. A theme is connected to the author’s message. The author’s message is a bigger idea that connects to our social worlds like, “Friends help each other through tough times.” Readers will develop their ideas by thinking about how the text is similar to or different from their personal lives. In doing so, they will uncover world issues that exist in texts. Finally, in writing, readers will make a personal connection to a theme they have identified using text evidence to support their thinking.</td>
<td>• Identifying the setting, explicit or inferred, including time and place and analyze its impact for understanding 4.RL.3 • Determining the importance of events leading to the resolution of a problem and include them in a summary 4.RL.3 • Comparing/contrasting themes across a variety of texts and supporting thinking with evidence 4.RL.2 • Making a connection in writing that reflects understanding of the theme and is supported by text evidence 4.RL.1 and 4.RL.3 and 4.RL.9 • Inferring with text support 4.RL.1 • Synthesizing based on evidence from the text 4.RL.3 and 4.RL.1 • Comparing and contrasting point of view (First and Third Person) 4.RL.6 • Determining the meanings of similes, metaphors, onomatopoeia, personification and hyperbole within text 4.RL.4 • Embed Speaking and Listening Standards throughout the unit (see back of page)</td>
<td>Interactive Read-Alouds by Linda Hoyt • Setting pg 123 • Plot pg 95 and 99 • Theme pg 135 • Inferring pg 41 • Point of View pg 193 • Simile/metaphor pg 177 • Onomatopoeia pg 171 • Personification pg 197 • Hyperbole pg 227</td>
<td>Story elements • Character • Character traits • Plot • Setting • Rising action • Climax • Falling action • Resolution • Problem/solution • Theme • Synthesizing • Point of view (first and third person) • Simile • Metaphor • Onomatopoeia • Personification • Hyperbole</td>
</tr>
</tbody>
</table>

THE COMPREHENSION TOOLKIT BY HARVEY & GUTRUS

- Infer Meaning Book #4 Lesson 15-infer theme
- Summarize and Synthesize Book #6 Lessons 24-25 synthesize (use fiction book)

OTHER RESOURCES

NOTEBOOK CONNECTIONS: STRATEGIES FOR THE READER’S NOTEBOOK by Aimee Buckner p. 94-98 (theme)
Grade 6 Lit and Comp Curriculum

Nonfiction: Craft, Structure, & Analysis

Overview: Students will analyze authors' craft within a variety of nonfiction texts.

Bolded words indicate key academic vocabulary for students

<table>
<thead>
<tr>
<th>STANDARDS: RI 6.4, RI 6.5, RI 6.6, RI 6.8</th>
<th>MINI-LESSONS Instructional Focus</th>
<th>SUPPORTING RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI 6.3</td>
<td>How do details introduce, illustrate, or elaborate a topic?</td>
<td>Professional</td>
</tr>
<tr>
<td>Analyze in detail how an individual, event or idea is introduced, illustrated, and elaborated in a text. (R)</td>
<td>- Review Figurative Language</td>
<td>Teacher's Edition of Textbook: Holt Elements of Literature: Introductory Course</td>
</tr>
<tr>
<td>RI 6.4</td>
<td>Define and identify technical and connotative language (denotative language)</td>
<td>Located on Sharepoint</td>
</tr>
<tr>
<td>Distinguish between literal and figurative language. (K)</td>
<td>- What did the author mean when they used certain figurative, connotative, or technical language?</td>
<td>- Text Features for NF</td>
</tr>
<tr>
<td>Define technical and connotative. (K)</td>
<td>- How do context clues help to determine the meaning?</td>
<td>- NF Text Maps</td>
</tr>
<tr>
<td>Determine meaning of literal, figurative, connotative, and technical words as they are used in the text. (R)</td>
<td>Nonfiction structure and text features</td>
<td>School's Professional Library</td>
</tr>
<tr>
<td>RI 6.5</td>
<td>- Non-fiction text features including headings, subheadings, captions, graphics, bold words, maps, charts, tables.</td>
<td>- The Continuum of Literacy Learning by Fountas and Pinnell</td>
</tr>
<tr>
<td>Analyze the text and determine how a particular sentence, paragraph, chapter or section fits into the structure of the text and contributes to the development of ideas. (R)</td>
<td>- Organizational Patterns such as: Cause/effect, compare/contrast, problem/solution, question/answer, sequence, chronological, list, spatial</td>
<td>Teaching for Comprehending and Fluency by Fountas and Pinnell</td>
</tr>
<tr>
<td>RI 6.6</td>
<td>Point of View and Purpose</td>
<td>75 Nonfiction Texts by Harvey Daniels</td>
</tr>
<tr>
<td>Determine an author’s point of view and how it’s conveyed in the text (R)</td>
<td>- Determine author’s point of view and author’s purpose. Why are they writing this piece and from what perspective?</td>
<td>Upfront and Scholastic Scope</td>
</tr>
<tr>
<td>Determine an author’s purpose and how it’s conveyed in the text. (R)</td>
<td>- Analyze persuasive techniques (eg. logical appeals, fallacious reasoning, propaganda). How is the author trying to influence the audience? Is the author credible?</td>
<td>Student:</td>
</tr>
</tbody>
</table>
| **RI 6.8** | | - Holt Elements of Literature: Introductory Course (“Understanding the Features... p. 53; “Becoming a Critical}
McLean County Unit District No. 5
High School English Curriculum

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Honors English II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level</td>
<td>10</td>
</tr>
</tbody>
</table>

OVERVIEW

This theme-based course focuses on taking contemporary literature and analyzing it through a global lens. Composition instruction will include literary analysis and narrative composition which will vary in topic according to the literature being studied. Speech, grammar and research skills will be taught within each semester.

COURSE STANDARDS The following standards will be covered over the duration of the course.

- **RL.9-10.1**: Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.
- **RL.9-10.2**: Determine a theme or central idea of a text and analyze in detail its development over the course of the text, including how it emerges and is shaped and refined by specific details; provide an objective summary of the text.
- **RL.9-10.4**: Determine the meaning of words and phrases as they are used in the text, including figurative and connotative meanings; analyze the cumulative impact of specific word choices on meaning and tone (e.g., how the language evokes a sense of time and place, how it sets a formal or informal tone).
- **RL.9-10.6**: Analyze a particular point of view or cultural experience reflected in a work of literature from outside the United States, drawing on a wide reading of world literature.
- **RL.9-10.10**: By the end of grade 10, read and comprehend literature, including stories, dramas, and poems, at the high end of the grades 9-10 text complexity band independently and proficiently.
- **RI.9-10.1**: Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.
- **RI.9-10.2**: Determine a theme or central idea of a text and analyze in detail its development over the course of the text, including how it emerges and is shaped and refined by specific details; provide an objective summary of the text.
- **RI.9-10.8**: Delineate and evaluate the argument and specific claims in a text, assessing whether the reasoning is valid and the evidence is relevant and sufficient; identify false statements and fallacious reasoning.
- **RI.9-10.10**: By the end of grade 10, read and comprehend nonfiction at the high end of the grades 9-10 text complexity band independently and proficiently.
- **W.9-10.10**: Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audiences.
- **SL.9-10.1**: Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 9-10 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
- **SL.9-10.6**: Adapt speech to a variety of contexts and tasks, demonstrating command of formal English when indicated or appropriate. (See grades 9-10 language standards 1 and 3 on pages 54 for specific expectations.)
- **L.9-10.1**: Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.
- **L.9-10.2**: Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.
- **L.9-10.6**: Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases; gather vocabulary knowledge when considering a word or phrase important to comprehension or expression.

SUGGESTED TIMELINE

- **First Semester (~16 weeks)** These units DO NOT need to be taught in any particular order.
 - Central Text: Things Fall Apart (~4-6 weeks)
 - Central Text: Hiroshima (~5-7 weeks)
 - Central Text: When the Emperor Was Divine (~4-6 weeks)

- **Second Semester (~20 weeks)** To Kill a Mockingbird will need to be taught during 3rd quarter in the 2013-2014 school year.
 - Central Text: To Kill a Mockingbird (~5-7 weeks)
 - Central Text: A Midsummer Night’s Dream or The Taming of the Shrew (~7-9 weeks)
 - Central Text: Persepolis (~4-6 weeks)
REQUIRED ASSESSMENT

- Writing
 - During EACH semester, students must complete at least two multi-draft essays.
 - During the first semester, students will write a Narrative Essay, a Persuasive Essay, and an Expository Paragraph. The persuasive essay or expository paragraph should be a literary analysis.
 - During the second semester, students will write a Persuasive Essay (not literary analysis), a Literary Analysis Essay, and a Creative Narrative.

- Speaking and Listening
 - During EACH semester, students must prepare and deliver at least one formal speech/presentation.

GRAMMAR STRAND

The following conventions will be covered over the duration of the first semester.

- Produce complete sentences, recognizing and correcting inappropriate fragments and run-ons. [L.9-10.1]
- Choose words and phrases to convey ideas precisely and for effect. [L.9-10.1]
- Recognize and correct inappropriate shifts in verb tense. [L.9-10.1]
- Recognize and correct inappropriate shifts in pronoun number and person. [L.9-10.1]
- Recognize and correct vague pronouns (i.e., ones with unclear or ambiguous antecedents). [L.9-10.1]
- Use commas correctly with introductory elements (transitions, prepositional phrases, participial phrases, introductory adverb clauses), interrupters (appositives, parenthetical expressions), and conjunctive adverbs. [L.9-10.2]
- Vary sentence patterns for meaning, reader/listener interest, and style. [L.9-10.1]
- Maintain consistency in style and tone. [L.9-10.1]
- Place phrases and clauses within a sentence, recognizing and correcting misplaced and dangling modifiers. [L.9-10.1]
- Choose language that expresses ideas precisely and concisely, recognizing and eliminating wordiness and redundancy. [L.9-10.1]
- Recognize and correct inappropriate shifts in verb voice and mood [L.9-10.1]
- Use parallel structure. [L.9-10.1]

RESEARCH STRAND

The following skills will be covered over the duration of the course. Skills must be formally assessed at least twice each semester.

- Review and reinforce 9th grade research skills
- Review and reinforce 9th grade LMC skills
 - Use the Card Catalogue
 - Make distinctions about the credibility, reliability, consistency, strengths and limitations of resources, including information gathered from Web sites
- Understand the difference between database and Internet searches
 - How to access the databases and how to judge which one(s) to use
 - How to search (try to make this as interactive as possible)
 - How to sort through results to determine what will work and what won’t.
 - Where to find citation information
- Gather relevant information from at least two sources to complete an essay or research project
- Take and organize notes on relevant knowledge
- Incorporate paraphrasing into at least one multi-draft essay or major project
- Accurately embed (lead in—quotations—explanation) quotations from primary sources
- Cite sources using a standard format (MLA) with a high degree of accuracy
- Create a bibliography following standard format and with a high degree of accuracy
Mathematical Practice Standards

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

<table>
<thead>
<tr>
<th>What do we want students to know?</th>
<th>How do we know if they know it?</th>
<th>What do we do if they don’t know it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Core Standards and Student Targets</td>
<td>Assessments</td>
<td>Interventions</td>
</tr>
</tbody>
</table>

Unit 0: Pre-Algebra Skills

1st Semester – 3-5 Days

Summative Assessment:
Science Example

<table>
<thead>
<tr>
<th>What do we want students to know?</th>
<th>How do we know if they know it?</th>
<th>What do we do if they don’t know it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td>NGSS - DCI</td>
<td>Essential Learning Targets</td>
</tr>
<tr>
<td>Unit 2: Energy and Matter in Ecosystems</td>
<td></td>
<td>Assessments</td>
</tr>
<tr>
<td>Performance Expectation:</td>
<td>Length:</td>
<td>Resources</td>
</tr>
<tr>
<td>2 of 4</td>
<td>4 Weeks</td>
<td></td>
</tr>
</tbody>
</table>

Unit 2: Energy and Matter in Ecosystems

(LS1-7)
Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

- I can describe the inputs and outputs of cellular respiration.
- I can explain how chemical energy stored in bonds can be used to create new molecules.
- I can explain how energy from food is made into usable energy for an organism (ATP) through the process of cellular respiration.
- I can illustrate energy conversions that must take place as energy flows through a system and explain it in terms of the law of conservation of energy.
- Vocabulary includes: cellular respiration, glucose, carbon dioxide, ATP, molecule, chemical bond, light energy, thermal energy, chemical energy, mitochondria, cell, law of conservation of energy

- Teachers will demonstrate burning a marshmallow versus sticking a marshmallow (or sugar) in an E-flask of yeast and warm water with a balloon over the opening. Students will compare and contrast these two processes with a focus on inputs/outputs of molecules and energy.
- Students will diagram energy conversions that took place in order to create and use the marshmallow and explain how it relates to law of conservation of energy.

Scientific & Engineering Practices: Develop a model based on evidence to illustrate the relationships between systems or components of a system.

Crosscutting Concepts: Models can be used to simulate systems and interactions — including energy, matter, and information flows — within and between systems at different scales.
<table>
<thead>
<tr>
<th>Timeline</th>
<th>Common Core</th>
<th>Essential Learning Targets</th>
<th>Assessments</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-32 days</td>
<td>Unit 1: Matter and Energy</td>
<td>PS 1A, Target 1: I can compare and contrast solids, liquids, and gases. (Section 2.1)</td>
<td># of Multiple Choice Common Questions 6 questions</td>
<td>Remediation: Chem Think Website Question Set Topic www.chemthink.com Introduction: Particulate Nature of Matter Target 1-4 Worksheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS1A, Target 2: I can differentiate between elements, compounds, and mixtures and their properties. (Section 2.2, 2.3)</td>
<td># of Multiple Choice Common Questions 7 questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS1B, PS3B, Target 3: I can differentiate between physical and chemical properties and physical and chemical changes. (Section 2.1, 2.4)</td>
<td># of Multiple Choice Common Questions 6 questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS1A, Target 4: I can apply the laws of conservation of mass and energy. (Section 1.2, 2.4)</td>
<td># of Multiple Choice Common Questions 3 questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target 5: I can analyze data critically (calculations and graphing) and take data using the appropriate lab tool. (dimensional analysis; best fit line; extrapolation; interpretation) (Section 3.1 and 3.3)</td>
<td>Remediation: Target 5-6 Worksheet Correct the mistakes on the Target 5-6 Quiz by writing correction statements Complete the online textbook quizzes for the essential targets missed on the test www.pearsonsuccessnet.com Enrichment: SAS Curriculum Virtual Density Lab</td>
</tr>
<tr>
<td></td>
<td>PS1A, Target 6: I can perform calculations involving density and understand the concept of density. (Section 3.4)</td>
<td># of Multiple Choice Common Questions 5 questions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit 1: Matter and Energy</td>
<td>Summative Unit Assessments Objective Tests (Multiple Choice, matching, true/false) 7 question multiple choice Unit Test with 34 common questions Performance Based Assessment Chemistry-Build A Boat Performance Based Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Purpose do Targets Serve?

- Knowing what to teach
- Knowing what to assess
- Knowing what instructional activities to plan
- Avoiding coverage at the expense of learning
- Ability to interpret and use assessment results
- System for tracking and reporting information
- Common ground for working collaboratively with other teachers
Learning Targets

<table>
<thead>
<tr>
<th>Rating Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have never heard of this before! This is like a foreign language to me!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I think I understand this but do not know how to explain it!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I understand this and can do what the target asks of me.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I know this target well and could teach it to another!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. I can develop evidence that living things are made of cells.

2. I can compare and contrast unicellular and multicellular organisms.

3. I can distinguish between living and non-living cells.

4. At a minimum, I can identify the functions the following parts of the cell: nucleus, chloroplasts, mitochondria, cell wall, and cell membrane.

5. I can explain how the function of each cell part relates to the whole cell.

6. I can differentiate between cells, tissues, organs & organ systems.

7. I can summarize important aspects of organ systems in a multicellular organism.

8. I can connect how particular systems work together.

9. I can determine the effects on other systems if one system does not work properly.
CURRICULUM WORK COMPLETED...

- CCSS aligned English Language Arts (ELA) K-12
- CCSS aligned Math K-8, Algebra
CURRICULUM WORK CONTINUES…

- CCSS alignment for Geometry, Algebra II
- Ongoing curriculum revision for core and non-core areas to revise targets based on assessment feedback
- Next Generation Science Standards (NGSS) Biology, chemistry and MS science this year
- NGSS elementary curriculum back mapping alignment starting with 5th grade this summer
- Common assessment development in all courses
- Training to align instructional practices with curriculum and assessment development
THE CURRICULUM CYCLE NEVER ENDS

Figure 4.2: The PLC Teaching-Assessing-Learning Cycle

- **Step One**: Collaborative teams identify learning targets and design common unit tasks and assessment instruments.
- **Step Two**: Teachers implement formative assessment classroom strategies.
- **Step Three**: Students take action on in-class formative assessment feedback.
- **Step Four**: Students use assessment instruments from step one for motivation, reflection, and action.
- **Step Five**: Collaborative teams use ongoing assessment feedback to improve instruction.

The PLC Teaching-Assessing-Learning Cycle