Answers for Lesson 9-5, pp. 500-503

1. enlargement; center A, scale factor $\frac{3}{2}$
2. enlargement; center C, scale factor 3
3. enlargement; center R, scale factor $\frac{3}{2}$
4. reduction; center K, scale factor $\frac{1}{3}$
5. reduction; center L, scale factor $\frac{1}{3}$
6. enlargement; center M, scale factor 2
7. reduction; center (0,0), scale factor $\frac{1}{2}$
8. enlargement; center (0, 0), scale factor 2
9. enlargement; center (0, 0), scale factor $\frac{3}{2}$
10. 121.94 in.
11. 512 in.
12. 67.5 in.
13. 1.25 ft
14. about 0.35 in.
15. $P'(6, -3), Q'(6,12), R'(12, -3)$
16. $P'(-50,10), Q'(-30,30), R'(10, -30)$
Answers for Lesson 9-5, pp. 500-503 Exercises (cont.)

17. $P'(\frac{-9}{4}, 0), Q'(0, \frac{9}{4}), R'(\frac{3}{4}, -\frac{9}{4})$

18. $D'(2, -10)$

19. $L'(-15, 0)$

20. $A'(-9, 3)$

21. $T'(0, 18)$

22. $M'(0, 0)$

23. $N'(-0.4, -0.7)$

24. $F'(1, -\frac{2}{3})$

25. $B'(\frac{1}{8}, -\frac{1}{15})$

26. $Q'(6\sqrt{6}, \frac{3\sqrt{2}}{2})$

27. $Q'(9,12), W'(9,15), T'(9, 3), R'(-6, -3)$

28. $Q'(-6,8), W'(6,10), T'(6,2), R'(-4, -2)$

29. $Q'(\frac{-3}{2}, 2), W'(\frac{3}{2}, \frac{5}{2}), T'(\frac{3}{2}, \frac{1}{2}), R'(1, -\frac{1}{2})$

30. $Q'(\frac{-3}{4}, 1), W'(\frac{3}{4}, \frac{5}{4}), T'(\frac{3}{4}, \frac{1}{4}), R'(\frac{1}{2}, -\frac{1}{4})$

31. $Q'(-1.8, 2.4), W'(1.8, 3), T'(1.8, 0.6), R'(-1.2, -0.6)$

32. $Q'(-2.7, 3.6), W'(2.7, 4.5), T'(2.7, 0.9), R'(-1.8, -0.9)$

33. $Q'(-30, 40), W'(30, 50), T'(30, 10), R'(-20, -10)$

34. $Q'(-300, 400), W'(300, 500), T'(300, 100), R'(-200, -100)$

35. The image has side lengths 10 in. and measures 60.

36. B
37.

38.

39.

40.

41. Check students’ work.

42. Use a scale factor of \(\frac{2}{3} \).

43. \(I'J' = 10; \) \(H'J' = 12 \)

44. \(HJ = 12; \) \(I'J' = 5.25 \)

45. \(HI = 32; \) \(I'J' = 7.5 \)

46. The perimeter is doubled but the area is multiplied by 4.

47. \(x = 3; \) \(y = 60 \)

48. 60, 60; the two triangles are similar, so corresponding angles are congruent.
Answers for Lesson 9-5, pp. 500-503 Exercises (cont.)

49. \[\triangle TBA \sim \triangle T'B'A' \]
50. \[\triangle TBA \sim \triangle T'B'A' \]

51. \[\triangle T = \triangle T' \]
52. \[\triangle T = \triangle T' \]

53. \[\triangle GHI \sim \triangle G'H'I' \]

54. 12
55. 60 cm
56. \(\frac{9}{256} \text{ ft}^2 \)

57. False; a dilation doesn’t map a segment to a \(\cong \) segment unless the scale factor is 1.

58. False; a dilation does not change orientation.

59. False; a dilation with a scale factor greater than 1 is an enlargement.

60. True; the image and preimage are similar, so the corresponding \(\triangle \) are \(\sim \).
Answers for Lesson 9-5, pp. 500-503 Exercises (cont.)

61. False; if the center of dilation is on the preimage, it is also on the image.

62. Each vertex is 1 ft from the light.

63. Connect corresponding points A and A’ and B and B’. Extend \(\overline{AA'} \) and \(\overline{BB'} \) until they intersect at the center of dilation. The scale factor is the length of \(\overline{A'B'} \) divided by the length of \(\overline{AB} \).

64. a., c.

65. a. \(P'(-1, -2), Q'(-3, -4), R'(-4, -1) \)

b. Each point of the \(\triangle \) is reflected in the origin, which is the point of reflection. Two figures are symmetrical with respect to a pt. \(P \) if \(P \) is the midpoint of each segment that connects two corr. points of the figures.

66. Construct small square \(D'E'F'G' \) so that \(\overline{D'G'} \) is on \(\overline{AC} \) (with \(D' \) between \(A \) and \(G' \)), \(E' \) is on \(\overline{AB} \), and \(F' \) is inside \(\triangle ABC \). Draw \(\overline{AF'} \) to meet \(\overline{BC} \) at \(F \). Through \(F \) construct the line \(\parallel \) to \(\overline{AC} \). Label its point of intersection with \(\overline{AB} \) as \(E \). Through \(E \) and \(F \) construct the lines \(\perp \) to \(\overline{AC} \). Label their points of intersection with \(\overline{AC} \) as \(D \) and \(G \) respectively. \(DEFG \) is the desired square.