Assessment Title: Finding Forms of a Quadratic Summary
Unit 3: Quadratic Functions Working with Equations

Learning Targets:
- Use and interpret various forms of quadratics functions
- Identify key features of a quadratic function

As practiced in the lesson, if all key features (x-intercepts, y-intercept and vertex) are to be identified, it is sometimes necessary to express a function in an equivalent form. The forms and key features found include the following:

<table>
<thead>
<tr>
<th>Form</th>
<th>Key Features Easily Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Form: (y = a(x - h)^2 + k)</td>
<td>vertex ((h, k))</td>
</tr>
<tr>
<td></td>
<td>y-intercept (replace (x) with 0, and simplify)</td>
</tr>
<tr>
<td>Factored Form: (y = (x + a)(x + b))</td>
<td>x-intercepts from factors</td>
</tr>
<tr>
<td></td>
<td>y-intercept by replacing (x) with 0, and simplifying</td>
</tr>
<tr>
<td>Standard Form: (y = ax^2 + bx + c)</td>
<td>y-intercept is (c) (replace (x) with 0, and simplify)</td>
</tr>
</tbody>
</table>

PART 1: Vertex Form to Standard Form (Identifying the y-intercept):

Use prior knowledge to simplify expression, and write terms in descending order.

Vertex Form

\[
y = 2(x - 1)^2 + 3
\]

\[
y = 2(x^2 - 2x + 1) + 3
\]

Multiply \((x - 1)(x - 1)\), and simplify.

\[
y = 2x^2 - 4x + 2 + 3
\]

Distribute 2.

Standard Form

\[
y = 2x^2 - 4x + 5
\]

Simplify.

TRY IT OUT: Write each quadratic function in standard form and identify the y-intercept of each function.

1. \(y = 3(x + 2)^2 + 1 \)

 Standard Form: _______________

 y-intercept: (________ , ________)

2. \(y = (x - 2)^2 + 2 \)

 Standard Form: _______________

 y-intercept: (________ , ________)

3. \(y = -(x + 1)^2 - 1 \)

 Standard Form: _______________

 y-intercept: (________ , ________)

4. \(y = -2(x - 4)^2 - 3 \)

 Standard Form: _______________

 y-intercept: (________ , ________)
PART 2: Factored Form to Standard Form:

Use prior knowledge to simplify expression, and write terms in descending order.

Factored Form

\[y = 3(x - 2)(x - 1) \]
\[y = 3(x^2 - x - 2x + 2) \]
\[y = 3x^2 - 3x + 2 \] Multiply \((x - 2)(x - 1)\) using Distributive Property.

Standard Form

\[y = 3x^2 - 9x + 6 \] Simplify.

TRY IT OUT: Write quadratic function in standard form.

1. \[y = -2(x + 2)(x - 1) \]

2. \[y = (x + 4)(x + 3) \]

y-intercept: (________, ________) y-intercept: (________, ________)

3. \[y = 3(2x - 1)(x - 1) \]

4. \[y = (5x + 1)(x - 3) \]

y-intercept: (________, ________) y-intercept: (________, ________)
PART 3: Standard Form to Factored Form (Identifying the x-intercepts):

This will require new knowledge in factoring quadratic expressions.

Standard Form \(y = 2x^2 + 4x - 6 \)
\(y = 2(x^2 + 2x - 3) \) Factor out common factor of 2.

Factored Form \(y = 2(x + 3)(x - 1) \) Factor quadratic expression.

TRY IT OUT: Write quadratic function in factored form.

1. \(y = x^2 + 5x + 6 \) \(x - \text{intercepts}: \)
2. \(y = 2x^2 - x - 1 \) \(x - \text{intercepts}: \)

3. \(y = x^2 - 5x + 6 \) \(x - \text{intercepts}: \)
4. \(y = x^2 - 5x - 6 \) \(x - \text{intercepts}: \)

5. \(y = 3x^2 - 6x + 3 \) \(x - \text{intercepts}: \)
6. \(y = x^2 - 3x - 10 \) \(x - \text{intercepts}: \)

7. \(y = x^2 - 4x + 4 \) \(x - \text{intercepts}: \)
8. \(y = 2x^2 + 4x - 70 \) \(x - \text{intercepts}: \)

9. \(y = x^2 - 17x + 72 \) \(x - \text{intercepts}: \)
10. \(y = 5x^2 + 35x + 60 \) \(x - \text{intercepts}: \)
PART 4: Standard Form to Vertex Form:

*Reason to change would be to identify vertex. This will require new knowledge in completing the square.

Standard Form

\[y = x^2 + 4x - 6 \]
\[y = (x^2 + 4x + 4) - 3 - 4 \]
Add 4 to complete the square. Subtract 4 to keep equation balanced.

Vertex Form

\[y = (x + 2)^2 - 7 \]
Write in factored form, and simplify.

Standard Form

\[y = 2x^2 + 4x - 10 \]
\[y = 2(x^2 + 2x - 5) \]
Factor out 2.
\[y = 2[(x^2 + 2x + 1) - 5 - 1] \]
Add 1 to complete the square. Subtract 1 to keep equation balanced.
\[y = 2[(x + 1)^2 - 6] \]
Write in factored form, and simplify.

Vertex Form

\[y = 2(x + 1)^2 - 12 \]
Distribute 2.

TRY IT OUT: Write quadratic function in vertex form.

1. \[y = x^2 + 6x - 2 \]

 \[\text{Vertex:} \]

2. \[y = x^2 + 8x - 1 \]

 \[\text{Vertex:} \]

3. \[y = 2x^2 + 4x + 6 \]

 \[\text{Vertex:} \]

4. \[y = 3x^2 + 12x - 6 \]

 \[\text{Vertex:} \]

5. \[y = x^2 + 12x + 2 \]

 \[\text{Vertex:} \]

6. \[y = x^2 + 5x + 1 \]

 \[\text{Vertex:} \]
ANSWER KEY

As practiced in the lesson, if all key features (x-intercepts, y-intercept and vertex) are to be identified, it is sometimes necessary to express a function in an equivalent form. The forms and key features found include the following:

<table>
<thead>
<tr>
<th>Form</th>
<th>Key Features Easily Identified</th>
</tr>
</thead>
</table>
| Vertex Form: \(y = a(x - h)^2 + k \) | vertex \((h, k)\)
 \(y \)-intercept (replace \(x\) with 0, and simplify) |
| Factored Form: \(y = (x + a)(x + b) \) | \(x \)-intercepts from factors
 \(y \)-intercept by replacing \(x\) with 0, and simplifying |
| Standard Form: \(y = ax^2 + bx + c \) | \(y \)-intercept is \(c\) (replace \(x\) with 0, and simplify) |

PART 1: Vertex Form to Standard Form (Identifying the \(y\)-intercept):

Use prior knowledge to simplify expression, and write terms in descending order.

Vertex Form
\[
y = 2(x - 1)^2 + 3
\]
\[
y = 2(x^2 - 2x + 1) + 3
\]
Multiply \((x - 1)(x - 1)\), and simplify.
\[
y = 2x^2 - 4x + 2 + 3
\]
Distribute 2.
Standard Form
\[
y = 2x^2 - 4x + 5
\]
Simplify.

TRY IT OUT: Write each quadratic function in standard form and identify the \(y\)-intercept of each function.

1. \[
y = 3(x + 2)^2 + 1 \]
\[
= 3(x^2 + 4x + 4) + 1
\]
\[
= 3x^2 + 12x + 12 + 1
\]
Standard Form: \(3x^2 + 12x + 13\)
y-intercept: (\(0\), \(13\))

2. \[
y = (x - 2)^2 + 2 \]
\[
= (x - 2)(x - 2) + 2
\]
\[
= x^2 - 4x + 4 + 2
\]
\[
= x^2 - 4x + 6
\]
Standard Form: \(x^2 - 4x + 6\)
y-intercept: (\(0\), \(6\))

3. \[
y = -(x + 1)^2 - 1 \]

4. \[
y = -2(x - 4)^2 - 3 \]
\[
= -2(x - 4)(x - 4) - 3
\]
Assessment Title: Finding Forms of a Quadratic Summary
Unit 3: Quadratic Functions Working with Equations

\[y = -\frac{(x+1)(x+1)}{1} \]
\[= -\frac{(x^2 + 2x + 1)}{1} \]
\[= -x^2 - 2x - 1 - 1 \]

Standard Form: \(x^2 - 2x - 2\)

y-intercept: \((0, -2)\)

\[y = -2(x^2 - 8x + 16) - 3 \]
\[= -2x^2 + 16x - 32 - 3 \]

Standard Form: \(-2x^2 + 16x - 35\)

y-intercept: \((0, -35)\)

PART 2: Factored Form to Standard Form:

Use prior knowledge to simplify expression, and write terms in descending order.

Factored Form
- \(y = 3(x - 2)(x - 1)\)
- \(y = 3(x^2 - x - 2x + 2)\)
- \(y = 3(x^2 - 3x + 2)\)

Multiply \((x - 2)(x - 1)\) using Distributive Property.

Simplify.

Standard Form
- \(y = 3x^2 - 9x + 6\)

Distribute 3.

TRY IT OUT: Write quadratic function in standard form.

1. \(y = -2(x + 2)(x - 1)\)
\[= -2(x^2 + x - 2) \]
\[= -2x^2 - 2x + 4 \]

y-intercept: \((0, 4)\)

2. \(y = (x + 4)(x + 3)\)
\[= x^2 + 7x + 12 \]

y-intercept: \((0, 12)\)

3. \(y = 3(2x - 1)(x - 1)\)
\[= 3(2x^2 - 3x + 1) \]
\[= 6x^2 - 9x + 3 \]

y-intercept: \((0, 3)\)

4. \(y = (5x + 1)(x - 3)\)
\[= 5x^2 - 14x - 3 \]

y-intercept: \((0, -3)\)
PART 3: Standard Form to Factored Form (Identifying the x-intercepts):

This will require new knowledge in factoring quadratic expressions.

Standard Form

\[y = 2x^2 + 4x - 6 \]

\[y = 2(x^2 + 2x - 3) \]

Factored Form

\[y = 2(x + 3)(x - 1) \]

Factor out common factor of 2.

Factor quadratic expression.

TRY IT OUT: Write quadratic function in factored form.

1. \[y = x^2 + 5x + 6 \]

\[= (x+3)(x+2) \]

\[x - \text{intercepts}: (-3,0) \& (-2,0) \]

2. \[y = 2x^2 - x - 1 \]

\[= (-2x-1)(x+1) \]

\[x - \text{intercepts}: (-\frac{1}{2},0) \& (1,0) \]

3. \[y = x^2 - 5x + 6 \]

\[= (x-3)(x-2) \]

\[x - \text{intercepts}: (3,0) \& (2,0) \]

4. \[y = x^2 - 5x - 6 \]

\[= (x-6)(x+1) \]

\[x - \text{intercepts}: (6,0) \& (-1,0) \]

5. \[y = 3x^2 - 6x + 3 \]

\[= (3x-3)(x-1) \]

\[x - \text{intercepts}: (1,0) \]

6. \[y = x^2 - 3x - 10 \]

\[= (x-5)(x+2) \]

\[x - \text{intercepts}: (5,0) \& (-2,0) \]

7. \[y = x^2 - 4x + 4 \]

\[= (x-2)(x-2) \]

\[x - \text{intercepts}: (2,0) \]

8. \[y = 2x^2 + 4x - 70 \]

\[= (2x-10)(x+7) \]

\[x - \text{intercepts}: (5,0) \& (-7,0) \]

9. \[y = x^2 - 17x + 72 \]

\[= (x-8)(x-9) \]

\[x - \text{intercepts}: (8,0) \& (9,0) \]

10. \[y = 5x^2 + 35x + 60 \]

\[= (5x+20)(x+3) \]

\[x - \text{intercepts}: (5,0) \& (-3,0) \]
Assessment Title: Finding Forms of a Quadratic Summary
Unit 3: Quadratic Functions Working with Equations

PART 4: Standard Form to Vertex Form:

*Reason to change would be to identify vertex. This will require new knowledge in completing the square.

Standard Form

\[
\begin{align*}
\text{y} &= x^2 + 4x - 6 \\
\text{y} &= (x^2 + 4x + 4) - 3 - 4
\end{align*}
\]

Add 4 to complete the square. Subtract 4 to keep equation balanced.

Vertex Form

\[
\begin{align*}
\text{y} &= (x + 2)^2 - 7
\end{align*}
\]

Write in factored form, and simplify.

Standard Form

\[
\begin{align*}
\text{y} &= 2x^2 + 4x - 10 \\
\text{y} &= 2(x^2 + 2x - 5) \\
\text{y} &= 2[(x^2 + 2x + 1) - 5 - 1]
\end{align*}
\]

Factor out 2. Add 1 to complete the square. Subtract 1 to keep equation balanced.

Vertex Form

\[
\begin{align*}
\text{y} &= 2[(x + 1)^2 - 6] \\
\text{y} &= 2(x + 1)^2 - 12
\end{align*}
\]

Write in factored form, and simplify.

TRY IT OUT: Write quadratic function in vertex form.

1. \(y = x^2 + 6x - 2 \)
\[
\begin{align*}
= (x^2 + 6x + 9) - 2 - 9 \\
= (x + 3)^2 - 11
\end{align*}
\]

Vertex: \((-3, -11)\)

2. \(y = x^2 + 8x - 1 \)
\[
\begin{align*}
= (x^2 + 8x + 16) - 1 - 16 \\
= (x + 4)^2 - 17
\end{align*}
\]

Vertex: \((-4, -17)\)
Math 2 (L1-6)

Assessment Title: Finding Forms of a Quadratic Summary
Unit 3: Quadratic Functions Working with Equations

3. \(y = 2x^2 + 4x + 6 \)
 \[
 = \frac{2(x^2 + 2x + 3)}{2} + 3 - 1
 = 2(x + 1)^2 + 2
 \]
 Vertex: \((-1, 2)\)

4. \(y = 3x^2 + 12x - 6 \)
 \[
 = \frac{3(x^2 + 4x - 2)}{3} - 2 - 4
 = 3(x + 2)^2 - 6
 \]
 Vertex: \((-2, -6)\)

5. \(y = x^2 + 12x + 2 \)
 \[
 = \frac{(x^2 + 12x + 36) + 2 - 36}{(x + 6)^2 - 34}
 \]
 Vertex: \((-6, -34)\)

6. \(y = x^2 + 5x + 1 \)
 \[
 = \frac{(x^2 + 5x + \frac{25}{4}) + 1 - \frac{25}{4}}{(x + \frac{5}{2})^2 - \frac{21}{4}}
 \]
 Vertex: \((\frac{5}{2}, -\frac{21}{4})\)